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Modern Methods
Increased implementation of deep learning is forecast to 
introduce new opportunities to the drug discovery arena  
and add value to data held by pharmaceutical companies

By Dr Tom 
Whitehead  
at Intellegens

Early-stage drug discovery has 
been an enthusiastic adopter of 
computationally aided design in recent 
years, with computational visualisation 
and predictions becoming integral 
to the way chemists work. This 
forward-looking approach to applying 
technology in existing workflows 
makes drug discovery an important 
field for the ongoing deep learning 
revolution, where new and innovative 
tools can make an important 
difference to real, relevant projects.

A key application of computational 
measures in drug discovery has been 
in the development and utilisation 
of quantitative structure-activity 
relationship (QSAR) models. These 
models take features of a compound, 
known as descriptors, and match them 
to the compound’s activity in an assay 
of interest.  Typically, the compound 
descriptors capture both whole-
molecule properties (such as the 
molecular weight, topological polar 
surface area, and McGowan volume [1-
2]), as well as sub-structural fragments. 
The activity in the chosen assay is then 
expressed as a mathematical function 
of the descriptors. Many forms for 
the function have been tried over the 
years, from simple linear regression 
fits to machine learning methods, 
such as support vector machines and 
random forests (3-4). The predictions 
have added great value to the drug 
discovery process, serving to give 
quantitative confirmation to the 
intuition and designs of chemists.

Deep Learning

In recent years, one of the most 
important trends in machine learning 

has been the development of ‘deep 
learning’, where multiple layers of 
data abstraction are composed 
together to form very complex and 
powerful functions of the input 
data (5). In image recognition and 
time-series processing tasks, deep 
artificial neural networks now provide 
state of the art solutions in the form 
of convolutional neural networks 
(CNNs) and recurrent neural networks 
respectively. More recently, deep 
artificial neural networks have also 
been used to construct QSAR models, 
but this has provided mixed results. 
At a recent conference in Switzerland, 
Robert Sheridan from Merck reported 
that deep-learning QSAR models 
offered a negligible improvement 
over traditional approaches across 30 
representative QSAR datasets (6). This 
serves to highlight that deep learning 
is not a panacea and adds most value 
when applied to problems where 
conventional techniques are unable  
to work effectively at all.

Some of the challenges with applying 
deep learning to drug discovery are 
features specific to the pharmaceutical 
domain. In deep learning, data is king, 
but, in drug discovery, experimental 
measurements are often difficult 
and expensive to obtain, resulting in 
limited data on the most interesting 
assays, which complicates the training 
of accurate deep learning models. 
While generic image recognition CNNs 
are frequently trained on hundreds 
of millions of labelled images, even 
large pharma companies typically 
only have a few million compounds 
in their corporate collections, most 
measured against a handful of assays. 
Complicating matters further is that 

these measured assays are different for 
different compounds; no compound 
has been measured in every assay 
ever devised, and no assay has been 
run for every compound. The public 
ChEMBL database only has activity 
measurements for around 0.07% of 
the possible compound/assay pairs it 
contains, and pharma company data is 
frequently similarly sparse. This sparsity 
of data makes it difficult for deep 
learning to capture the relationships 
between different assays, a problem 
which is only just beginning to be 
overcome by modern approaches.

A further challenge with applying 
deep learning to drug discovery 
is the variability of the data that is 
available. Biological data is inherently 
noisy and uncertain, with three-fold 
variability between results from the 
same compound in the same assay 
not uncommon (7). This makes it 
impossible for deep learning models 
to come up with definitive predictions 
for assay results, which leads to 
it being vitally important for the 
uncertainties in predictions to be well 
captured. However, this, in turn, can 
lead to complications in analysis and 
interpretation of results by chemists. 

Deep Learning in Practice

Despite these challenges, the rise 
of deep learning provides a host of 
opportunities for expanding the toolkit 
of drug discovery. The first opportunity 
for deep learning to prove its worth 
is through the application of multi-
target modelling, by constructing a 
single deep learning model that can 
simultaneously predict the results 
of multiple assays. Multi-target 
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modelling teaches the algorithm a 
more profound representation of 
the chemical properties and their 
relationship to assay results, enabling 
the transfer of learnt correlations 
between assays. These multi-target 
models extend the concept of a 
QSAR model and offer the immediate 
advantage of automatically 
generating selectivity profiles,  
rather than just activity levels.

Further applications of deep 
learning will add significant value 
to the data that pharma companies 
already hold. Multi-target modelling 
allows chemists to accurately and 
confidently ‘fill in the gaps’ in the 
sparse databases of compound/assay 
data, imputing values for what would 
be measured in each assay for each 
compound, were the experiment 
to be carried out. These predictions 
can be used directly to inform the 
selection of hits for further analysis, 
and, as the model predictions are 
validated in experiment, the data  
can be fed back into the algorithm  
to create improved models of 
the area of chemical space most 
interesting to the chemist. An 
entirely automated procedure 
is also possible where the deep 

learning algorithm proposes the 
experiment that will most improve 
its estimates for a target of interest, 
iteratively converging to increasingly 
accurate predictions. One of the 
most interesting applications of this 
automated data prediction capability 
is in the hunt for false negative assay 
results. High-throughput screening 
frequently, but incorrectly, identifies 
active compounds as inactive, and 
the ability to concretely identify  
this chemical ‘dark matter’ would 
open up new opportunities  
and understanding (8).

The next step in the cycle of 
automation is for the deep  
learning algorithm to be able to 
propose entirely new compounds 
for investigation, rather than simply 
making predictions for existing 
compounds. In other fields, generative 
adversarial networks (GANs) have 
had reasonable success in generating 
ideas that pass for human-generated, 
including recently creating artwork 
that sold for over US $400,000 at 
Christie’s (9). GANs work by setting 
up two deep learning models, one of 
which creates suggestions for new 
ideas, be they artworks or chemical 
compounds, while the other model 

then tries to distinguish from real,  
pre-existing data. GANs are still in  
their infancy in drug discovery, but 
they offer the promise of automated 
design and optimisation of 
compounds in early-stage projects.

Discovery Developments

Despite these leaps forward in the 
abilities of deep learning algorithms  
to generate and test chemical 
compound proposals, deep learning 
methods are unlikely to entirely 
supplant living, breathing chemists. 
Although machine learning enables 
very rigorous and detailed analyses 
of immediate, concrete problems, 
no machine learning approach 
developed so far can match the 
human ability to take a strategic 
overview of a research project, 
understanding and directing 
multiple different strands in pursuit 
of separate, overlapping objectives 
simultaneously. This has resulted 
in the concept of a ‘centaur’: 
cooperation between humans 
and machine learning algorithms, 
with the human providing high-
level direction to advanced deep 
learning methods. In chess, which 
was long a leading environment 
for the development of machine 
learning methods, a concept has 
been developed by Garry Kasparov 
called ‘advanced chess’, where 
human chess players are advised by 
advanced chess programs, with the 
combination of player and algorithm 
able to outperform the leading chess  
software alone (10). A similar 
development is likely to play out 
in drug discovery, where chemists 
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supported by powerful deep learning 
approaches will be more successful 
than either the algorithms or the 
chemists alone.
 
The field of deep learning has  
much to offer early-stage drug 
discovery, through the development 
of more accurate models of chemical 
activity and selectivity, the triaging 
and cleaning of existing data, 
and even the suggestion of new 
experiments and compounds. 
Challenges are still present, 
particularly in the quality  
and volume of data available  
for training modern deep  
learning methods, and, in  
these areas, drug discovery  
also has much it will be able to 
give back to the development of 
deep learning algorithms, through 
increased resilience to noise and 
sparsity in training data. The  
journey is only just beginning for 
deep learning in drug discovery,  
but the future looks set to be  
productive and engaging  
for all involved.
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