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Introduction

This article is a brief introduction to some of the ideas behind measuring the
accuracy of supervised machine learning tools. The first half deals with classification
algorithms; those that decide which of several classes a sample belongs to. The chief
measure of accuracy there is the confusion matrix, from which a whole host of other
statistics may be extracted. The second half of this article deals with regression
algorithms, which give a predicted numerical value for some outputs from known
inputs.

Confusion matrix

A confusion matrix is a method for measuring the accuracy of a classification
algorithm. It is most easily understood through an example: imagine that a
classification algorithm has been trained to distinguish between carrots, bananas,
and apples. We can then draw a table of the results it obtained in testing:

Actual class

Carrot | Banana | Apple

Carrot 5 2 0]

Predicted
class Banana 3 3 2
Apple 0 1 n

The numbers in the matrix represent the number of tests that returned a particular
result: for example, for the 8 test cases that were actually carrots, the classifier
correctly thought that 5 of them were carrots, and incorrectly thought 3 of them
were bananas.

The entries on the diagonal of the matrix are correctly classified, and the entries off
the diagonal are incorrectly classified. The matrix provides more information than
simply the proportion of results that are correctly classified: in the above example, it
can be inferred that the classifier is good at identifying apples (only one false positive
apple, and two false negative apples, against 11 correctly identified apples), whilst the
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classification for bananas is much less accurate. The classifier especially had trouble
telling apart carrots and bananas: the corresponding sub-matrix does not appear
especially strongly peaked around the diagonal.

A whole range of statistics may be extracted directly from the confusion matrix.
These statistics generally refer to the accuracy of classification of one class (binary
classification): in this example, bananas.

The condition positive (P) is the number of actual bananas: here, 6. The condition
negative (N) is the number of actual not-bananas: here, 21. True positives (TP, 3 here),
true negatives (TN, 16 here), false positives (FP, 5 here) and false negatives (FN, 3 here)
may be combined to yield information about the accuracy of the classifier. Some
particular examples of important statistics are:

e Sensitivity or true positive rate % (0.5)

e Specificity or true negative rate % (0.762)
TP

e Precision (0.375)
TP+FP
e False discovery rate P (0.625)
FP+TP
e False omission rate — (0.158)
TN+FN
e Accuracy TE+TN (0.704)

P+N

— 2 (0.429)
2TP+FP+FN

All these statistics may be compared between classifiers. They may also be judged

e Flscore, the harmonic mean of precision and sensitivity

on their own merits: all have a possible range of [0,1], and a required standard may be
specified ahead of testing.

In problems where there are very imbalanced numbers of data points in the
different classes (here, we have many more not-bananas than we do bananas), none
of the statistics above are entirely reliable. A modified form of the F1 score, known as
the Fpscore, can be used to weight precision and sensitivity differently, prioritising
either the classifier identifying every banana (high sensitivity, g > 1), or only
identifying things it is certain are bananas (high precision, < 1). The Ficore can be
expressed as

(1+B2)TP
(1+B2%)TP+FP+B2FN’
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but the value of B (and hence relative importance of sensitivity and precision) need
to be set ahead of time, and hence knowledge about the relative sizes of the classes
is required.

Matthews correlation coefficient

One further statistic that may be extracted from confusion matrices is the Matthews
correlation coefficient. Again, this measure is primarily designed for examining
binary classifications, although it has been extended to cover the multiclass case.
For binary classification, the Matthews correlation coefficient is given by

TPXTN—FPXFN
J(TP+FP)(TP+FN)(TN+FP)(TN+FN)'

and determines a correlation coefficient that is the geometric mean of the
regression coefficients of the problem and its dual. It has been described as one of
the best ways of encapsulating the full confusion matrix in a single number, and
does not have any problem with systems with imbalanced numbers of data points.

The Matthews correlation coefficient takes values in the range [-1,1], with 1 being
perfect prediction and -1 completely incorrect prediction: O indicates the prediction
is no better than random. For the example above, the Matthews correlation
coefficient gives 0.932, indicating that despite the fairly low precision this classifier
has done a reasonably good job of recognising bananas. Again the primary use case
for the Matthews correlation coefficient is in

comparisons between classifiers.
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Receiver Operating Characteristics (ROC) curve.

This curve plots the true positive rate % against /J)

the false positive rate iV—P, with the curve being

plotted parametrically as a function of a
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sensitivity threshold. Example ROC curves from False positive rate

a biological context are shown in the figure: at
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any point on one of the curves, the sensitivity and (1-specificity) can be read off. A
perfect classifier's ROC curve would pass through the top left corner of the plot, and
a classifier that's no better than random would have a curve along the diagonal;
most classifiers, naturally, are somewhere in between. The Area Under a ROC Curve
(AUC) is another measure of the accuracy of a classifier: a value of 1 indicates that the
classifier correctly identifies every sample, a value of 0.5 indicates it cannot
distinguish between the two classes, and a value of O indicates it gets every sample
incorrect (and one’s classifier should be inverted).

Pearson correlation coefficient

The Pearson correlation coefficient is a metric designed for use comparing two
variables. In a machine-learning context, these can be the target values for a
supervised regression algorithm and the predicted values. Plotting one against the
other in a scatter graph, a perfect machine-learning algorithm would give a straight
line through the origin (y = x), with inaccuracies in the result giving scatter around
this line. The Pearson correlation coefficient gives a measure of this scatter. The
Pearson correlation coefficient for the relationship between X and Ycan be
expressed as

o(X)Y)
o(X)o(Y)
where o(X) is the standard deviation of the variable X and ¢(X,Y) is the covariance of
the variables X and Y, defined as o(X)? = E[X?] - (E[X])? with E[X] being the
expectation value (mean) of X, and o(X,Y) = E[XY] — E[X]E[Y]. The Pearson correlation
coefficient takes values in the range [-1,1], with T and -1 being perfect correlation and
anti-correlation, and O indicating the variables are uncorrelated.

The Pearson correlation coefficient is only designed for comparisons where the
relationship between variables is expected to be linear. This is perfectly adequate for
examining the accuracy of a machine learning regression algorithm, but the
concept behind the Pearson correlation coefficient may be easily extended to
include non-linear relationships.
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r2 coefficient

In the case of linear regression, as found for the accuracy of a regression algorithm,
the r? coefficient is just the square of the Pearson correlation coefficient. More
generally, we can define

r2=1-— M

Y i—E[Y])?

where y; are the target values, and f; are the predicted values. This measure of least-
squares correlations takes values between 0 and 1, as before with O indicating no
correlation and 1 perfect correlation. This correlation coefficient is also referred to as
the coefficient of determination.

There are multiple variations on the r? coefficient, including modifications to remove
the unwelcome property of the original coefficient spuriously increasing when extra
data points are introduced. However the base r? coefficient remains a popular
choice for analysing the accuracy of models of data.

The choice between the Pearson correlation coefficient and the r? coefficient when
analysing the accuracy of a machine learning regression algorithm is to some extent
a matter of personal preference. For linear regression all the information in the r?
coefficient is contained in the Pearson correlation coefficient, although the inverse is
not true; but for analysing the accuracy of a machine learning algorithm, where a
linear relationship is expected and large changes in the evaluated gradient are
unlikely, both measures give equivalent information.

Mean squared error

The Mean Squared Error (MSE) is similar to the r? coefficient, and used for analysing a
supervised regression algorithm’s accuracy. Using the same notation as above, MSE
is expressed as

Yi (vi—f)?

1

i.e. the sum of the squared errors, divided by the number of samples to obtain the
mean. For a set of target values with unit variance, the MSE tends to 1 — r?; but for
general (dimensionful) data, the MSE is dimensionful (whilst r? is dimensionless), and
the magnitude of the MSE depends on the magnitude of the data. This makes the
MSE less transferable, and more difficult to interpret, than the r? coefficient, without
prior knowledge of the data.
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Relative error

The relative error is another measure of accuracy for a regression algorithm, which
combines features of both the r? coefficient and the MSE. It is expressed as
1 Y. lyi—fil
2 1 l yi
where |x| is the absolute value of x. This measure is dimensionless, like the r?

coefficient, but suffers from problems when the expected outcome is O (as this
appears in the denominator), and only makes sense for measurements in units of a
ratio scale (one where zero is a definite lower bound on the possible values), as
otherwise shifting every output value will change the measured relative error. This
makes the relative error a much worse measure of accuracy than r? in most cases.

Multi-dimensional regression

The basic expressions for the Pearson correlation coefficient, r? coefficient, and MSE
above assume that there is only one target variable being optimised in the
regression. However, some more advanced machine learning algorithms are
capable of mapping inputs to multiple outputs simultaneously. The most obvious
way to measure the accuracy of multiple outputs together is by simply summing
over the MSE of each individually; however, this only makes sense for outputs with
the same dimensionality. Similarly, summing over the relative error is only suitable

when all variables are measured on ratio scales.

However, there are alternative measures more suited to multi-dimensional
regression. For D dimensions of data, the average relative root mean square error
(aRRMSE) takes the form

Lsp % @i @-f (D)2
p 4= |y (y(D—E[y@])2

Similarly, a multi-dimensional version of the Pearson correlation coefficient can be
written

% i D-Ey DprD-E[F D)
(5 o @-Fy @2 [5; (¢ @-rr@p?

1wp
1¥h,
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which contains information about the correlation vs anticorrelation of the result as
well. Either of these expressions could be squared, to obtain a measure similar to a
multi-dimensional r?, which could more directly be written as

1—l 3—1 i (yi(d)_fi(‘fi))zz-
D=d=1y (y,@—E[y@)

Note that squaring the previous measures does not give the same result as this
version of multi-dimensional r?, and they cannot be compared, although either
separately would serve as a good measure of accuracy. The multi-dimensional r?,
Pearson correlation coefficient, and aRRMSE, weight each dimension of the output
identically; the sum over them could be weighted, but this would need to be
justified before the analysis was begun.

Conclusions

The measures used for the accuracy of machine learning algorithms can be split into
two classes; those for classification and those for regression, just as with the
algorithms themselves. The confusion matrix is the fundamental object for
analysing the accuracy of classification algorithms; even a simple binary
classification can be analysed in depth using a confusion matrix. Extracting statistics
from the confusion matrix is not difficult, although the choice of statistic to use is not
straightforward: simple measures like the sensitivity and precision lose a lot of
information from the confusion matrix, whilst the F1 score is biased in cases with
different class sizes. The Matthews correlation coefficient is a balanced measure that
gives a good idea of the accuracy of a classification algorithm, although a single
value can never capture the full detail of a matrix of accuracies in the confusion
matrix.

For regression algorithms, the choice of statistic to use is more straightforward; a
scatter plot of predicted value vs actual value can be interpreted in terms of the
equivalent Pearson or r? correlation coefficients, and these values have absolute
scales that can be used a priori to set a required accuracy. The mean square error,
whilst similar to the r? coefficient, suffers from a lack of transferability between
problems, and relative error depends on the measurement units, meaning that a
preference choice between the Pearson and r? coefficients is the main decision to
make when it comes to choosing an accuracy measure for machine learning
regression algorithms.
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For multi-dimensional regression problems, the Pearson correlation coefficient may
be extended to capture information about the accuracy of the regression in all
output dimensions. This (or perhaps its square) is probably the most effective
measure of multi-dimensional regression accuracy, although as in a single
dimension the choice between Pearson and r? coefficients is mostly personal

preference.
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