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Abstract

We describe a novel deep learning neural net-
work method and its application to impute as-
say pIC50 values. Unlike conventional machine
learning approaches, this method is trained on
sparse bioactivity data as input, typical of that
found in public and commercial databases, en-
abling it to learn directly from correlations be-
tween activities measured in di�erent assays.
In two case studies on public domain data
sets we show that the neural network method
outperforms traditional quantitative structure-
activity relationship (QSAR) models and other
leading approaches. Furthermore, by focussing
on only the most con�dent predictions the accu-
racy is increased to R2 > 0.9 using our method,
as compared to R2 = 0.44 when reporting all
predictions.

1 Introduction

Accurate compound bioactivity and property
data are the foundations of decisions on the se-
lection of hits as the starting point for discov-
ery projects, or the progression of compounds
through hit to lead and lead optimisation to
candidate selection. However, in practice, the
experimental data available on potential com-
pounds of interest are sparse. High-throughput
screens may be run on a large screening col-

lections, but these are costly, and thus applied
infrequently, and the throughput of an assay
usually comes with a trade-o� against the qual-
ity of the measured data. As discovery projects
progress and new compounds are synthesised,
the increasing cost of generating high-quality
data means that only the most promising com-
pounds are advanced to these late-stage studies.
If one considers all of the compounds in a

large pharmaceutical company's corporate col-
lection and the assay endpoints that have been
measured, only a small fraction of the possible
compound-assay combinations have been mea-
sured in practice. Public domain databases
are also sparsely populated; for example, the
ChEMBL1,2 data set is just 0.05% compete.
The implication of this is that a vast trove

of information would be revealed if only a
small fraction of these missing data could be
�lled in with high-quality results in a cost-
e�ective way. New hits for projects targeting
existing biological targets of interest and high-
quality compounds, overlooked during optimi-
sation projects, could be identi�ed. Further-
more, compounds with results from early assays
could be selected for progression with greater
con�dence if downstream results could be accu-
rately predicted.
A common approach for prediction of com-

pound bioactivities is the development of quan-
titative structure-activity relationship (QSAR)

1

tom@intellegens.ai


models.3 These are generated using existing
data to identify correlations between easily
calculated characteristics of compound struc-
tures, known as descriptors, and their bio-
logical activities or properties. The result-
ing models can then be applied to new com-
pounds that have not yet been experimentally
tested, to predict the outcome of the corre-
sponding assays. A wide range of statisti-
cal methods have been applied to build QSAR
models, from simple linear regression methods
such as partial least squares4 to more sophisti-
cated machine learning approaches such as ran-
dom forests (RF),5�9 support vector machines10

and Gaussian processes.11 Another approach is
the pro�le-QSAR (pQSAR) method proposed
by Martin et al.,12,13 which uses a hierarchi-
cal approach to build a model of a bioactivity
by using as inputs the predictions from QSAR
models of multiple bioactivities that may be
correlated. Recently, the application of ad-
vances in deep learning have been explored for
generation of QSAR models;14 while small im-
provements in the accurcay of predictions have
been found, these methods have not generally
resulted in a qualitative step forward for ac-
tivity predictions.15�17 One advantage of deep
learning methods is the ability to train models
against multiple endpoints simultaneously, so-
called multi-target prediction. This enables the
model to `learn' where a descriptor correlates
with multiple endpoints and hence improve the
accuracy for all of the corresponding endpoints.
However, the sparse experimental data could

reveal more information regarding the correla-
tions between the endpoints of interest, if these
could be used as inputs to a predictive model.
Conventional machine learning methods can-
not use this information as inputs because the
bioactivity data are often incomplete, and so
cannot be relied on as input. In this paper we
present a novel deep learning framework, previ-
ously applied to materials discovery,18�20 that
can learn from and exploit information that is
sometimes missing, unlike other contemporary
machine learning methods. A further bene�t of
the proposed method is that it can estimate the
uncertainty in each individual prediction, allow-
ing it to improve the quality of predictions by

focussing on only the most con�dent results.
We will compare the performance of our

method to impute bioactivities with a RF, a
commonly applied and robust QSAR machine
learning method, a modern multi-target deep
learning method, a leading matrix factorisation
approach, and the second-generation pQSAR
2.0 technique.13

In Section 2 we present the underlying deep
learning methodology to handle missing data
and estimate uncertainty, along with details of
the data sets used in this study, the accuracy
metric, and other machine learning methods ap-
plied for comparison. Then in Section 3 we
present two examples to assess the performance
of the algorithm against current methods. Fi-
nally, in Section 4 we discuss our �ndings and
potential applications of the results.

2 Methodology

The goal for the neural network tool is to pre-
dict and impute assay bioactivity values, by
learning both the correlations between chemi-
cal descriptors and assay bioactivity values and
also the correlations between the assay bioactiv-
ities. In Subsection 2.1 we introduce the data
sets used to validate the approach, before turn-
ing in the following subsections to the descrip-
tion of the neural network method itself.

2.1 Data sets

Two data sets were used to train and validate
the models: a set containing activities derived
from �ve adrenergic receptor assays (hereafter
described as the �Adrenergic set") and a data
set comprised of results from 159 kinase as-
says proposed by Martin et al. as a challeng-
ing benchmark for machine learning methods13

(the �Kinase set"). These data sets are sum-
marised in Table 1. All of the data were sourced
from binding assays reported in the ChEMBL
database1,2 and the assay data represented as
pIC50 values (the negative log of the IC50 in
molar units). In the case of the Adrenergic set,
measurements from di�erent assays were com-
bined for each target activity and, where mul-
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tiple values were available for the same com-
pound, the highest pIC50 value was used, rep-
resenting a `worst case' scenario for selectivity.
In the case of the Kinase data set, each activity
was derived from a single assay, as de�ned in
ChEMBL.

Table 1: A summary of the data sets used in
the examples presented herein. The table shows
the data set, the number of compounds and as-
says each contains, and the proportion of the
compound-assay values that are �lled.

Data set Compounds Assays Filled
Adrenergic 1731 5 37.5%
Kinase 13998 159 6.3%

320 molecular descriptors were used to char-
acterise the compounds in the data sets. These
comprised whole-molecule properties, such as
the calculated octanol:water partition coe�-
cient (logP), molecular weight, topological po-
lar surface area21 and McGowan volume,22 as
well as counts of substructural fragments rep-
resented as SMARTS patterns.23

In the case of the Adrenergic set, we employed
a �ve-fold cross-validation approach for build-
ing models and assessing their resulting accu-
racy. The compounds in the data set were ran-
domly split into �ve disjoint subsets of equal
size, the models were trained using four of the
subsets, and then their accuracy evaluated on
the remaining subset. We repreated this pro-
cess using each of the subsets for testing, so
that each compound was used as a test case for
the tool. The Adrenergic data set is provided
with the supporting information for this paper.
The Kinase set was provided in the support-

ing information of the paper by Martin et al.13

as a challenging benchmark for machine learn-
ing methods. In this case, the data set was
split by Martin et al. into independent train-
ing and test sets. The data were initially clus-
tered for each assay and the members of the
clusters used as the training set, leaving the
outliers from this clustering procedure as the
data against which the resulting models were
tested. This procedure means that the test
data is not representative of the data used to

train the models, making this a di�cult test of
a machine learning method's ability to extrap-
olate outside of the chemical space on which it
was trained. Martin et al. described this as
a `realistic' test set, designed to be more rep-
resentative of real working practices in an ac-
tive chemistry optimisation project, where new
compounds are continuously proposed that ex-
tend beyond the chemical space that has pre-
viously been explored. Because the clustering
was carried out on a per-assay basis, some com-
pounds appear in both the train and test sets:
but the assay data for each compound is split
between the sets, so that none of the same as-
say/compound pairs appear in both the train
and test set and the validation is against a ro-
bust, disjoint test case. The Kinase data set
is provided with the supporting information for
this paper.

2.2 Performance Metric

To assess the performance of the models we use
the coe�cient of determination R2 for each as-
say in the test set:

R2 = 1−
∑

i(y
pred
i − yobsi )2∑

i(y
obs
i − yobs)2

,

where yobsi is the ith observed assay value and
ypredi is the corresponding prediction. This is
a more stringent test than the commonly used
squared Pearson correlation coe�cient, which
is a measure of the �t to the best �t line be-
tween the predicted and observed values, while
the coe�cient of determination is a measue of
the �t to the perfect identity line ypredi = yobsi .
By de�nition, the coe�cient of determination is
less than or equal to the squared Pearson cor-
relation coe�cient.
For each of the methods, we report the mean

of the R2 across all of the assays in the test set
to give an overall value.

2.3 Neural network formalism

We now turn to the neural network formal-
ism. This algorithm is able to automatically
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identify the link between assay bioactivity val-
ues, and use the bioactivity data of other com-
pounds to guide the extrapolation of the model,
as well as using molecular descriptors as de-
sign variables. Furthermore, the method can
estimate uncertainties in its predictions. The
neural network builds on the formalism used to
design nickel-base superalloys, molybdenum al-
loys, and identify erroneous entries in materials
databases.18�20 We describe here the core neural
network and the �rst novel aspect, the ability
to estimate the uncertainty in the predictions,
before Section 2.4 details the second novel part
of the algorithm: how to handle missing data,
necessary to capture bioactivity-bioactivity cor-
relations.
Each input vector x = (x1, . . . , xA+D) to the

neural network contains values for D = 320
molecular descriptors and A = 5 (for the Adren-
ergic data set) or A = 159 (for the Kinase data
set) bioactivity values. The ordering of the el-
ements of the input is the same for each com-
pound, but otherwise unimportant. The output
(y1, . . . , yA+D) of the neural network consists of
the original descriptors and the predicted bioac-
tivities: only the elements (y1, . . . , yA) corre-
sponding to predicted bioactivities are used for
evaluating the network accuracy.
The neural network itself is a linear superpo-

sition of hyperbolic tangents

f : (x1, . . . , xi, . . . , xA+D) 7→ (y1, . . . , yj, . . . , yA+D)

with yj =
H∑

h=1

Chjηhj +Dj,

and ηhj = tanh

(
I∑

i=1

Aihjxi +Bhj

)
.

This neural network has a single layer of hidden
nodes ηhj with parameters {Aihj, Bhj, Chj, Dj}
as shown in Figure 1. Each property yj for
1 ≤ j ≤ A is predicted separately. We set
Ajhj = 0 so the network will predict yj without
knowledge of xj. Typically around �ve hidden
nodes ηhj per output variable gives the best-
�tting neural network. We use hyperbolic tan-
gent activation functions to constrain the mag-
nitude of ηhj, giving the weights Chj sole re-

y1=Ch1ηh1+Dh1

x1

x2

xA+D

η11

ηH1

y1

y2

yA+D

ηh1=tanh(Aih1xi+Bh1)

y2=Ch2ηh2+Dh2

x1

x2

xA+D

η12

ηH2

y1

y2

yA+D

ηh2=tanh(Aih2xi+Bh2)

Given
properties

Hidden
nodes

Predicted
properties

Figure 1: The neural network. The graphs
show how the outputs for y1 (top) and y2 (bot-
tom) are computed from all the inputs; similar
graphs can be drawn for all other yj to compute
all the predicted properties. A linear combina-
tion (gray lines) of the given properties (red) are
taken by the hidden nodes (blue), a non-linear
tanh function, and a linear combination (gray
lines) gives the predicted property (green).
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sponsibility for the amplitude of the output re-
sponse. Twelve separate networks were trained
on the data with di�erent weights18�20 and their
variance taken to indicate the uncertainty in
the predictions accounting for both experimen-
tal uncertainty in the underlying data and the
uncertainty in the extrapolation of the train-
ing data.24,25 This is conceptually similar to
the approach taken to uncertainty estimation
in ensemble models, although here the under-
lying model is a deep neural network and the
uncertainty estimates generated accurately rep-
resent the observed errors in the predictions,
including uncertainty due to extrapolation that
is poorly captured by random forest (see also
Section 3.2).

2.4 Handling incomplete data

Network at x

Have all
properties?

Use averages
x0=x

Reached
convergence

Xn+1 = [xn + f(xn)]/2

Return f(xn)

Yes

No

Yes

No

Figure 2: The data imputation algorithm for
the vector x of the molecular descriptors and
bioactivity values that has missing entries. We
set x0 = x, replacing all missing entries by av-
erages across each assay, and then iteratively
compute xn+1 as a function of xn and f(xn) un-
til we reach convergence after n iterations.

Experimental data are often incomplete �
bioactivity values are not known for every com-

pound and assay, and moreover the set of miss-
ing bioactivities is di�erent for each compound.
However, there is information embedded within
bioactivity-bioactivity correlations. A typical
neural network formalism requires that each
property is either an input or output of the
network, and all inputs must be provided to
obtain a valid output. In contrast, we treat
both the molecular descriptors and also the as-
say bioactivities as both inputs and outputs of
the neural network and adopt an expectation-
maximization algorithm,26 where we �rst pro-
vide an estimate for the missing data, and use
the neural network to iteratively improve that
initial estimate.
The algorithm is shown in Figure 2. For

any unknown bioactivities we �rst set missing
values to the average of the bioactivity values
present in the data set for that assay. With es-
timates for all values of the neural network we
can then iteratively compute

xn+1 =
xn + f(xn)

2
.

The �nal predictions (y1, . . . , yA) are then the
elements of this converged algorithm corre-
sponding to the assay bioactivity predictions.
The softening of the results by combining them
with the existing predictions serves to prevent
oscillations of the predictions, similar to the
use of �shortcut connections� in ResNet.27 Typ-
ically up to 5 iteration cycles were used to im-
pute missing bioactivity values, using the same
function f (as de�ned in Section 2.3) in every
cycle. After 5 cycles the coe�cient of deter-
mination R2 in training improved by less than
0.01, comparable to the accuracy of the ap-
proach, con�rming that we had used su�cient
iteration cycles to reach convergence.
The parameters {Aihj, Bhj, Chj, Dj} in the

function f are then trained using simulated an-
nealing28 to minimize the least-square error of
the predicted bioactivities (y1, . . . , yA) against
the training data. At least 105 training rounds
were used to reach convergence.
Hyperparameters, in particular the number of

hidden nodes per output, the number of itera-
tion cycles, and the number of training rounds,
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were selected using random holdout validation
on each training data set, without reference to
the corresponding test set.

2.5 Other machine learning meth-

ods

We compare our neural network algorithm with
a variety of other popular machine learning ap-
proaches from the literature. RF methods5�9

are a popular method of QSAR analysis, build-
ing an ensemble of decision trees to predict in-
dividual assay results. Because decision trees
require all their input data to be present when
they are trained, it is not possible to build RF
models using sparse bioactivity data as input,
and RF must rely purely on chemical descrip-
tors. We used the scikit-learn29 implementation
of the regression RF method.
For a comparison with a modern deep

learning approach, we also built a conven-
tional multi-target deep neural network (DNN)
model30 using TensorFlow.31 The model took
linear combinations of descriptors as inputs,
with eight fully connected hidden layers with
512 hidden nodes, and output nodes that gave
the predicted assay results. The ELU activa-
tion function was used for all layers, and the
network was trained using Adam backpropaga-
tion with Nesterov momentum32 and a masked
loss function to handle missing values. A prin-
cipal component analysis (PCA) was performed
on the descriptors to select the subset of linear
combinations of descriptors that captured 90%
of the variance across the full descriptor set to
avoid over�tting of the DNN through the use
of too many descriptors.
A popular method of analysing sparse

databases is matrix factorisation,33 where the
matrix of compound-assay bioactivity values is
approximately factorised into two lower-rank
matrices that are then used to predict bioactiv-
ity values for new compounds. Matrix factori-
sation was popularised through its inclusion in
the winning entry of the 2009 Net�ix Prize.34

We used the modern Collective Matrix Fac-
torisation (CMF)35,36 implementation of ma-
trix factorisation, which makes e�ective use of
the available chemical descriptors as well as

bioactivity data, with separate latent features
specialising in handling the descriptors.
We also compare to the pro�le-QSAR 2.0

method of Martin et al.,13 which builds a lin-
ear partial least squares (PLS) model of assay
bioactivities from the predictions of random for-
est models for each assay individually. In the
2.0 version of the pro�le-QSAR method the RF
predictions for an assay are not used as input
to the PLS model for that assay.

3 Imputing assay bioactivi-

ties

We present two tests of the performance of the
deep learning formalism to impute assay bioac-
tivity values. In each case we use disjoint train-
ing and validation data to obtain a true statis-
tical measure, the coe�cient of determination,
for the quality of the trained models.

3.1 Adrenergic receptors

We �rst present a case study using the Adren-
ergic data set described in Section 2.1. We
train two classes of model: the �rst uses com-
plete compound descriptor information to pre-
dict the bioactivity values, and the second class
uses both the chemical descriptors and also the
bioactivity-bioactivity correlations.
We �rst train a neural network to take only

chemical descriptors and predict assay bioac-
tivities. This approach is similar to traditional
QSAR approaches, although it o�ers the ad-
vantage of being able to indirectly learn the re-
lationships between assay bioactivities through
the iterative cycle described in Figure 2. We
train the neural network providing as input the
N descriptors with the highest average abso-
lute Pearson correlation against the �ve tar-
gets, with N varying between 0 and the full
set of 320 descriptors. The grey line in Fig-
ure 3 shows that the neural network, predict-
ing based purely on descriptors, achieves a peak
R2 = 0.60± 0.03 against the assays when using
50 descriptors: fewer descriptors do not provide
a su�cient basis set, whereas more descriptors
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Figure 3: The coe�cient of determination for
predicting the activity of the adrenergic recep-
tors with number of chemical descriptors. The
magenta line is when the neural network is
trained with both the activities and descriptors
present, the grey line with just the descriptors,
and the cyan line is for random forest. Error
bars represent the standard error in the mean
R2 over �ve-fold cross-validation.

over-�t the data. The neural network not re-
quiring the full set of chemical descriptors to
provide a high-quality �t enables us to focus at-
tention on the key descriptors, and hence chem-
ical features, that in�uence bioactivity against
these targets.37 We compare the neural network
result to traditional random forest, using the
same descriptor sets, which achieves a similar
value of R2 = 0.59±0.02 using 100 descriptors.
We next train a fresh neural network but in-

clude the possibility of bioactivity-bioactivity
correlations. With a total of 5 assays, this al-
lows up to 4 additional input values per target
as bioactivity values for every other assay are
used as input when present (although in the
majority of cases they are missing). It is not
possible to use this assay bioactivity data as
input to a RF approach, because the data is
sparse and RF methods require complete input
information. However, in Figure 3 we see that
the neural network's peak accuracy increases to
R2 = 0.71 ± 0.03 with 50 descriptors. We now
achieve a signi�cantly better quality of �t than
RF (with one-tailed Welch's t-test p = 3×10−4)
due to the strong bioactivity-bioactivity corre-
lations present in the data. The neural network
is able to successfully identify these stronger
bioactivity-bioactivity relations, without them

being swamped by the numerous but weaker
descriptor-bioactivity correlations.
We particularly see the value of the

bioactivity-bioactivity correlations with zero
descriptors, where the neural network achieves
R2 = 0.35 ± 0.03 due solely to bioactivity-
bioactivity correlations. Random forest is not
able to make predictions at all without any de-
scriptors being present, as it cannot take the
sparse bioactivity data as input, and so R2 = 0.
The ability to �t the data better than a lead-
ing QSAR method provides a solid platform
for use of this neural network to impute assay
bioactivity values.

3.2 Kinase data set

We now present a case study on the Kinase data
set proposed as an exemplar for benchmarking
predictive imputation methods,13 as described
in Section 2.1.
In this data set the validation data comprised

the outliers from a clustering procedure, re-
alistically representing the exploration of new
chemical space. The best achieved coe�cient
of determination by a method in the litera-
ture is R2 = 0.434 ± 0.009 by the pro�le-
QSAR 2.0 method,13 which we re-implemented
for this comparison. The DNN multi-target
model discussed in Section 2.5 achieved R2 =
0.11 ± 0.01, the CMF method achieved R2 =
−0.11±0.01, and a conventional RF QSAR ap-
proach achieved only R2 = −0.19 ± 0.01, a re-
sult which is worse than random due to the ex-
trapolation in chemical space required to reach
the test set points.
Using our deep neural network we predict

the assay bioactivity values and also the un-
certainties in the predictions. With 100% of
the predictions accepted, irrespective of the re-
ported con�dence, the neural network attains
R2 = 0.445 ± 0.007, a signi�cant improvement
over the DNN, CMF, and RF approaches and
similar to the pro�le-QSAR 2.0 method result.
However, access to the uncertainties in the pre-
dictions gives us more knowledge about the neu-
ral network results. In particular, we can dis-
card predictions carrying large uncertainty, and
trust only those with smaller uncertainty. This
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Figure 4: The coe�cient of determination for
predicting the activity of the clustered Kinase
data set with percentage of data predicted. The
cyan point is for the random forest approach,
the blue point is the collective matrix factorisa-
tion (CMF) method, the dark green point is the
deep neural network (DNN) approach, the or-
ange point is the pro�le-QSAR 2.0 method, and
the magenta line is the neural network proposed
in this work. The magenta line shows that the
accuracy of the neural network predictions in-
creases when focussing on the most con�dent
predictions, at the expense of imputing only a
proportion of the missing data. This con�rms
that the reported con�dences in the predictions
correlate strongly with their accuracy. Error
bars represent the standard error in the mean
R2 value over all 159 assays, and where not vis-
ible are smaller than the size of the points.

lets us focus on the most con�dent predictions
only, at the expense of reporting fewer total pre-
dictions. When this is done, the quality of the
remaining neural network predictions increases,
as shown in Figure 4, demonstrating that the
neural network is able to accurately and truth-
fully inform us about the uncertainties in its
predictions; the con�dence of predictions is cor-
related with their accuracy. The coe�cient
of determination reaches values of R2 > 0.9,
demonstrating e�ectively perfect predictions,
when we complete only the most con�dent 1%
of the data. We note that this focus on the
most con�dent predictions, and corresponding
increase in accuracy, is post-processing: only
one model is trained, and the desired level of
con�dence can be speci�ed and used to return
only su�ciently accurate results.
The neural network is signifcantly more ac-

curate than the DNN, CMF, and RF meth-
ods even when 100% of the predictions are ac-
cepted (with p-values 3 × 10−66, 2 × 10−102,
and 2×10−107 respectively), and is signi�cantly
more accurate than pQSAR 2.0 when only the
least con�dent 3% of predictions are discarded
(p = 3 × 10−4). As shown in Figure 4, the
accuracy improvement over the other methods
increases substantially as a smaller fraction of
the predictions are accepted.
The achieved R2 > 0.9 exceeds the level of

R2 = 0.7 that is often taken as indicating accu-
rate, reliable predictions in the presence of ex-
perimental uncertainty. In fact, the most con�-
dent 50% of the neural network's predictions all
have R2 > 0.7, permitting a nine-fold increase
in the number of accurate predictions that can
be used for further analysis, relative to the orig-
inal sparse experimental measurements.
This high accuracy is achieved after approxi-

mately 120 core hours of training. The time to
validate the data set is 0.1ms per compound for
the neural network, versus 10ms per compound,
100 times longer, for the traditional random for-
est approach. This acceleration in generating
predictions further enhances the real-world ap-
plicability of the neural network approach.
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3.2.1 Analysis

It is informative to analyse the results that our
neural network approach is able to calculate ac-
curately, and compare this to preconceptions of
how the algorithm functions. For example, as
a data-driven approach, it might be assumed
that the assays with the most training data
would be most accurately predicted by the neu-
ral network. However, as shown in Figure 5,
this is not the case; although the assay with
least training data is that predicted least accu-
rately, there is in general no correlation between
the accuracy of the neural network's predictions
and the amount of training data available to the
algorithm. In particular, the two assays with
most training data are relatively poorly cap-
tured by the neural network, with R2 < 0.2 in
both cases.

Figure 5: The coe�cient of determination mea-
sured for each of the 159 kinase assays, plotted
against the percentage of the data for that assay
present in the training set.

Likewise, the most con�dent predictions are
not for compounds `closest' to those in the
training set. The degree of separation can be
measured in terms of the Euclidean distance be-
tween the points in the multi-dimensional space
of descriptors used in the model. A represen-
tative example assay's data (ChEMBL assay
688660) is shown in Figure 6 where the training
points (grey crosses) and test points (coloured
points) are depicted in a 2-dimensional t-
distributed stochastic neighbour embedding (t-
SNE) generated using the StarDrop software
package.38 The levels of predictive con�dence
are fairly uniform with distance from the train-

ing data, con�rming the algorithm's ability to
con�dently predict test points that are rela-
tively far from the clusters of training points.
In addition to this analysis, the Euclidean dis-
tance between every test point and its nearest
neighbour training point was taken for all as-
says. This measure showed no correlation with
the network's uncertainty or error, indicating
that the neural network is operating beyond a
nearest-neighbour approach in descriptor space,
by exploiting assay-assay correlations that are
carried across into assay-descriptor space.

Figure 6: A 2-dimensional t-SNE embedding
of the input descriptor space for ChEMBL as-
say 688660. The grey crosses show the train-
ing data and the coloured points show the test
data with colour indicating the uncertainty es-
timate of the network in its predictions, where
red indicates zero uncertainty and yellow a high
uncertainty of 1 log unit.

3.2.2 Summary

We have shown that the neural network pre-
sented delivers similar quality predictions for
assay bioactivity to the pro�le-QSAR 2.0
method when considering the full test set and
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that these methods outperform QSAR meth-
ods, including modern DNNs, and also out-
performs matrix factorisation. In addition, a
key advantage is that the neural network gives
accurate uncertainties on its output, allowing
us to prioritise only well-predicted assay activ-
ities, enabling an increase in the coe�cient of
determination for the predictions of the realistic
data set from R2 = 0.445 up to R2 > 0.9 for a
subset of the data. The ability to tune accuracy
with amount of data predicted is an invaluable
tool for scientists, fueling con�dence in results
and permitting a focus on only high-quality
predictions. These most con�dent predictions
are also not for the most complete assays or the
most similar test points to the training data,
showing that the neural network approach is
able to learn more complex and powerful rep-
resentations of the assay bioactivity data.

4 Conclusions

We have presented a new neural network im-
putation technique for predicting bioactivity,
which can learn from incomplete bioactivity
data to improve the quality of predictions by us-
ing correlations between both di�erent bioactiv-
ity assays, and also between molecular descrip-
tors and bioactivities. This results in a signi�-
cant improvement in the accuracy of prediction
over conventional QSAR models, even those us-
ing modern deep learning methods, particularly
for challenging data sets representing an extrap-
olation to new compounds that are not well rep-
resented by the set used to train the model.
This is representative of many chemistry opti-
misation projects which, by de�nition, explore
new chemical space as the project proceeds.
The method presented can also accurately es-

timate the con�dence in each individual predic-
tion, enabling attention to be focussed on only
the most accurate results. It is important to
base decisions in a discovery project on reliable
results to avoid wasted e�ort pursuing incor-
rectly selected compounds or missing opportu-
nities by inappropriately discarding potentially
valuable compounds.39 On the Kinase example
data set, we demonstrated that 50% of the miss-

ing data could be �lled in with R2 > 0.7, which
is considered to represent a high level of �delity
between prediction and experiment.
The ability to make simultaneous, accurate

predictions across multiple assays will lend itself
well to the problem of selectivity across multiple
targets.40,41 The method is general, so can ap-
ply beyond the binding assay data used in this
analysis, for example to direct or downstream
functional assays; and the method can even
make accurate predictions beyond pIC50 val-
ues, including physicochemical, absorption, dis-
tribution, metabolism, excretion, and toxicity
(ADMET) properties. Therefore, it has a broad
application for identi�cation of additional ac-
tive compounds within a database, recognition
of the most in�uential chemical properties, pre-
diction of selectivity pro�les, and the selection
of compounds for progression to downstream
ADMET assays.
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