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Abstract

We train artificial neural networks to predict the physical properties of linear, single branched, and double branched
alkanes. These neural networks can be trained from fragmented data, which enables us to use physical property infor-
mation as inputs and exploit property-property correlations to improve the quality of our predictions. We characterize
every alkane uniquely using a set of five chemical descriptors. We establish correlations between branching and the boil-
ing point, heat capacity, and vapor pressure as a function of temperature. We establish how the symmetry affects the
melting point and identify erroneous data entries in the flash point of linear alkanes. Finally, we exploit the temperature
and pressure dependence of shear viscosity and density in order to model the kinematic viscosity of linear alkanes. The
accuracy of the neural network models compares favorably to the accuracy of several physico-chemical/thermodynamic
methods.
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1. Background

Lubricants are an important component in modern in-
dustry. They are used to reduce friction between surfaces,
protect them from wear, transfer heat, remove dirt, and
prevent surface corrosion to ensure the smooth functioning
of mechanical devices. The demand for lubricants makes
them an important economic component in oil and gas
business, while their importance is only expected to grow.
Even as we move towards a future in which fossil fuels will
be a less significant source of energy, the lubricant market
is expected to grow 1.

A typical lubricant product comprises mainly of base
oil, which is a mixture of predominantly alkanes that have
typically between 18 and 50 carbon atoms. To improve
the performance of a base oil, various additives are intro-
duced. Seven physical properties of prime importance for
lubricant performance are: melting point, boiling point,
flash point, heat capacity, vapor pressure, dynamic viscos-
ity and density. Most individual alkanes with appropriate
properties have never been isolated, so relatively little is
quantitatively known about their performance. However,
data for some alkanes’ experimentally determined values is
available in TRC Thermodynamic Tables: Hydrocarbons
volumes [1] or in the DIPPR 801 database 2.

Lubricants are made from readily available mixtures
of predominantly alkanes so it’s not certain that current
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formulations are optimal. Predicting the physical proper-
ties of alkanes and understanding the link between alkane
structure and lubricant performance would enable the com-
putational design of an optimal base oil, which would mo-
tivate the distillation of base oil constituents to approach
this optimum in practice.

The physical properties of alkanes that are relevant for
base oil lubricant design have previously been modeled
with a variety of semi-empirical methods. Wei explored
the relationship between rotational entropy and the melt-
ing point [24], while Burch and Whitehead use a combi-
nation of molecular structure and topological indices to
model the melting point of single branched alkanes with
fewer than 20 carbon atoms [37]. To predict the normal
boiling point of alkanes, Messerly et al. merged an infinite
chain approximation and an empirical equation [19], while
Burch, Wakefield, and Whitehead [33] used topological in-
dices and molecular structure to model it for alkanes with
fewer than 13 carbon atoms and Constantinou and Gani
[34] developed a novel group contribution method to calcu-
late it for various organic compounds. The semi-empirical
Antoine equation is frequently used to model the vapor
pressure as a function of temperature. Mathieu developed
a group contribution based method to calculate the flash
point of various alkanes [35], while Ruzicka and Domalski
estimated the heat capacity of various liquid alkanes using
a second order group additivity method [36]. De La Porte
and Kossack have developed a model based on free volume
theory to study long chain linear alkane viscosity as a func-
tion of temperature and pressure [38], Riesco and Vesovic
have expanded a hard sphere model to study similar sys-
tems, and Novak has established a corresponding-states
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model to study viscosity of linear alkanes for the entire
fluid region [40].

Purely empirical approaches have also been used in or-
der to predict physical properties of alkanes. For example,
Marano et al. develop an empirical set of asymptotic be-
havior correlations to predict the physical properties of a
limited family of alkanes and alkenes [15],[16],[17]. Alqa-
heem and Riazi, and Needham et al. have explored corre-
lations between different properties [2],[21] to predict the
missing values.

While all of these approaches have their own merits,
they cannot address the full range of alkanes, as they have
a limited range of validity. To accurately predict physical
properties for a wide range of alkanes we propose to ex-
ploit property-property correlations, molecular structure-
property correlations, and semi-empirical equations. Un-
fortunately, the data set of physical properties of alkanes
is fragmented, so to learn the property-property correla-
tions, we need a statistical method that can impute the
missing values. One such method is a principle component
analysis (PCA) [28], but it delivers accurate results only
when variables of interest are linearly correlated. Gaus-
sian processes [29] is another common approach to handle
fragmented data, but they are prohibitively expensive on
large datasets and frequently predict large uncertainties
for data that is vastly dissimilar to training data, which
limits their extrapolative power.

There is another statistical tool that we could use to
predict physical properties of alkanes, artificial neural net-
works [6],[23] (ANN) Figure 2. ANN’s have undergone
rapid development in the last few years, finding applica-
tions from image recognition to digital marketing. They
have also successfully been used to model physical proper-
ties of various organic compounds. For example, Suzuki,
Ebert and Schüürmann used physical properties and indi-
cator variables for functional groups to model viscosity as a
function of temperature for 440 organic liquids [41] Ali im-
plemented a conceptually similar approach to model vapor
pressure as a function of temperature for various organic
compounds [42]. Hosseini, Pierantozzi and Moghadasi, on
the other hand use pressure, pseudo-critical density, tem-
perature and molecular weight as neural network inputs to
model dynamic viscosity of several fatty acids and biodiesel
fuels as a function of temperature [43].

Unfortunately, while they are a powerful statistical tool,
artificial neural networks previously used to model physico-
chemical and thermodynamic properties of organic com-
pounds are not able to handle fragmented data, which lim-
its their applicability to model physical properties of alka-
nes. However, the neural networks described in Refs. [7],
[30], [31], [44], [45] can be trained and run with fragmented
data, which enables us to exploit property-property corre-
lations even when data is fragmented. This novel neural
network formalism has been used to discover two nickel-
based alloys for jet engines [31], and two molybdenum al-
loys for forging hammers [30], as well as for imputing and
finding errors in databases, with over a hundred errors dis-

covered in commercial alloy and polymer databases [7]. It
has also been applied for imputation of assay bioactivity
data [44]. These ANN’s serve as a holistic prediction tool
for the physical properties of alkanes, enabling us to ex-
ploit the property-property correlations, impute the miss-
ing values, and exploit the correlations between molecular
structure and physical properties.

In section 2, we present theory of these neural net-
works, describe an algorithm to generate the molecular
basis, and outline a statistical scheme to identify the most
accurate neural network model. In section 3, we apply
this formalism to predict the physical properties of lin-
ear and branched alkanes: in subsection 3.1, we predict
the boiling point and the heat capacity of light branched
alkanes; in subsection 3.2, we predict the vapor pressure
of light branched alkanes as a function of temperature; in
subsection 3.3, we predict the flash point of linear alka-
nes and identify erroneous experimental entries; in subsec-
tion 3.4, we predict the melting point of light branched
alkanes and explore physical effects of symmetry and in
subsection 3.5 we predict the kinematic viscosity of lin-
ear alkanes by exploiting the temperature and pressure
dependence of their dynamic viscosity and density. Fi-
nally, we summarize our findings in section 4. We com-
pare the accuracy of neural network models to competing
physico-chemical/thermodynamic methods that have been
used to model the same properties on similar systems. We
determine the accuracy of our models through the coeffi-
cient of determination (R2) and average absolute deviation
(AAD). We decide to use (R2) due to its invariance under
the shift in data and data rescaling, which is a very use-
ful property for problems in which the neural networks
re used, while we chose AAD due to its simplicity inter-
pretability.

2. Theory

2.1. Molecular basis

The correlation between molecular structure and phys-
ical properties is the backbone of modeling physical prop-
erties of alkanes. To exploit these correlations we define a
molecular basis that uniquely encodes the structure of ev-
ery linear, single branched, and double branched alkane
into five nonnegative integers. After representing each
alkane as a two dimensional graph (Figure 1), these five
basis set parameters are:

1. The number of carbon atoms.

2. The smaller number of C-C bonds between the end
of the longest carbon chain and its closer branch.

3. The number of C-C bonds in the branch closer to an
end of the longest carbon chain.

4. The number of C-C bonds between the other end of
the longest carbon chain and its closer branch.

5. The number of C-C bonds in the second branch.
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Figure 1: The molecular basis of 3-ethyl-2-methylhexane comprises
the five parameters (9,1,1,3,2).
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Figure 2: Schematic of a plain neural network. There are three
layers, with input on left through output on the right. Each circle
represents a node.

If an alkane has a single branch, the last two basis
elements are 0. If an alkane is linear, only the first element
is nonzero. This allows the basis set to smoothly pass from
straight chain to single to double branched alkane.

2.2. Neural networks

Neural networks are a versatile modern statistical tool.
They are a universal function approximator [13] that can
recognize patterns that other statistical methods miss. In
this section, we describe the theory of the neural networks
that we use to predict the physical properties of alkanes.
We first present a standard neural network in Figure 2,
and then we describe the modifications that enable us to
handle fragmented data.

The standard building block of a neural network is
called a node. Each node represents a variable. Nodes
are arranged in three types of layers. Every node is de-
noted by xij , where x is the variable, i is the layer index,
and j is the node index. The first layer is called an in-
put layer, comprising the descriptor variables. The second
layer is called the hidden layer, and its elements are non-
linear functions of linear combination of input nodes,

x2
i = σ

(∑
j

w1
ijx

1
j + w1

0i

)
. (1)

In the above equation, w1
ij are called the weights and

σ is a nonlinear function, commonly known as a transfer
function. Our neural networks use σ(x) = tanh(x) as the
transfer function.The third layer is the output, its elements
are linear combinations of nodes in a hidden layer and they
represent the estimators for variables of interest,

x3
i =

∑
j

w2
ijx

2
j + w2

0i. (2)

We train the neural networks by minimizing the cost
function

Cost(W) =
1

N

∑
i,j

(
y

[i]
j − x

3[i]
j

)2
. (3)

In the above equation, [i] denotes the ith example in the
training data while j denotes the jth variable, y denotes
the training example, x3 denotes the prediction and N de-
notes the number of training examples. This form of cost
function is called the mean squared error cost function.
There are other several other cost functions, such as the
mean absolute error cost function, the cross-entropy cost
function or the root mean square error cost function [23].
Minimizing the root mean square error cost function is
equivalent to minimization of the mean square error cost
function, mean absolute error doesn’t have a unique mini-
mum and is used to promote sparsity of the weight matrix,
while the cross-entropy cost function is used in classifica-
tion problems. Modelling physical properties of alkanes is
a non-sparse regression problem so the mean square error
cost function is an appropriate one to use. Cost function
is minimized iteratively by varying the weight matrix W
to yield the best model for the training data. To minimize
the cost function, we first normalise the data, before we
perform a random walk in the weight matrix space until
convergence. Some of other commonly used algorithms are
the gradient descent and the stochastic gradient descent
[23], but we have found that the random walk algorithm
with a predetermined expected move acceptance probabil-
ity of 20% is as accurate and faster than other commonly
used algorithms.

2.3. Handling sparse data

The neural networks described above can exploit the
correlations between molecular structure and physical prop-
erties, but they cannot train from sparse data, as they
require all the inputs to give an output. To exploit the
property-property correlations we use physical properties
as both inputs and outputs of the neural network model,
which requires two changes to its architecture. Firstly,
during neural network training, the weights w2

ii are set to
zero to ensure property predictions are independent of the
original value. Secondly, after the network is trained, we
replace the missing values with the mean property values
and recursively apply the following equation:

x[n+1] = γx[n] + (1− γ)f(x[n]), (4)
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Figure 3: Data imputation algorithm for the vector x. We set x0 = x,
replacing all missing entries by averages across each assay and, then,
iteratively compute xn+1 as a function of xn and f(xn) until we reach
convergence.

where n denotes the iteration step, f(x) is a prediction
for x obtained from the neural network, and γ ∈ [0, 1] is
a mixing parameter. In this manuscript, we use γ = 1

2 .
We apply the above equation until convergence, before we
apply function f again. A schematic of the data imputa-
tion algorithm is shown in Figure 3. To predict the mean
and the uncertainty in the physical property of interest,
we train and run six neural networks in parallel, assigning
random weights to each data entry for each neural network
model. For each neural network k, the cost function then
takes the following form:

Cost(W)k =
1

N

∑
i,j

qk,i

(
y

[i]
j − x

3[i]
j

)2
, (5)

where
∑

i qi = 1.

2.4. Cross validation

Training error, which we measure through the coeffi-
cient of determination (R2) and average absolute deviation
(AAD), is a poor indicator of neural network’s predictive
power, as it underestimates the true error in neural net-
work models. To obtain a better estimate of the neural
network model accuracy, we perform cross-validation by
splitting the full data set into the training set and the val-
idation set. We use a scheme called leave-one-out cross-
validation, in which we train the neural network on all
but one data entry in a dataset before we test it against
the remaining entry. We repeat this process until neural
network has been tested against every entry in a dataset.

We also use the leave-one-out cross-validation to deter-
mine the optimal number of hidden nodes for our neural
network. We train neural networks with different number
of hidden nodes, perform cross-validation for each of them,
and choose an architecture that has the smallest cross val-
idation error. We illustrate this procedure in Figure 4 by
determining the optimal neural network architecture for
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0.9850
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0.9900
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0.9950
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1.0000

R
2

Figure 4: Determining the optimal number of hidden nodes for the
boiling point. Green curve represents training R2, while the blue
curve represents the cross-validation R2.

predicting boiling point of straight, single-branched and
double-branched alkanes. In this case, the training er-
ror R2 increases as a function of number of hidden nodes,
but the cross-validation error is the smallest for the neu-
ral network model with 6 hidden nodes. Too few hidden
nodes are unable to properly capture the behavior while
too many hidden nodes overfits the training data.

3. Results and discussion

In this section, we apply the formalism presented in
section 2 to predict the physical properties of alkanes. We
first predict the boiling point and the heat capacity of
branched alkanes. Then we predict the Antoine coefficients
to model the vapor pressure as a function of temperature.
We also identify erroneous data in the flash point data from
the literature, predict the flash point and establish the
connection between the number of molecular symmetries
and the melting point. Finally, we exploit the temperature
and pressure dependence of dynamic viscosity and density
and predict the kinematic viscosity of linear alkanes as a
function of temperature.

We work with linear alkanes up to tridecane and with
branched alkanes with fewer than 13 carbon atoms. Our
data set comprises of experimental values obtained from
various online sources ([11], [12], [20]), as well as experi-
mental values presented in previous research papers ([3],
[4], [9], [10], [14], [18], [22], [25]) and the TRC Thermody-
namic Tables [1].

3.1. Boiling point and heat capacity

Predicting the boiling point of alkanes is an impor-
tant step in determining their suitability for use in base
oils, as alkanes with higher boiling points stay liquid at
higher temperatures. We predict the normal boiling point
of branched alkanes with fewer than 13 carbon atoms by
training a neural network on an dataset comprised of 188
alkanes [1] with molecular basis as the input nodes and 6
hidden nodes (subsection 2.4), obtaining a cross-validation
R2 = 0.992 and an AAD of 1.74◦C, indicating an excellent
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Figure 5: Parity plot for boiling point of alkanes. Our neural network
model is compared to the model 7.2 from [33].

fit. The high quality of fit to experimental data can be
seen in Figure 7.

After establishing the accuracy of the neural network,
we compare our results to two regression models that use
molecular structure and topological indices as inputs [33].
We compare three models for 62 alkanes whose boiling
point all three models predict. Our neural network model
outperforms both alternative models (Table 1). Apart
from showing improved accuracy, our neural network model
shows greater consistency than two competing models, as
the standard deviation in absolute error is 1.43◦C, while
the standard deviation in absolute error of model 7.2 is
4.37◦C and 4.75◦C for model 7.3. A parity plot is shown
in Figure 5. There are several molecules that both mod-
els 7.2 and 7.3 mispredict by a significant margin. Abso-
lute deviations for the boiling points of 3-ethyl-2-methyl-
heptane, 3-ethyl-3-methyl-pentane and 3-ethyl-3-methyl-
heptane and are 19.4◦C, 19.5◦C and 24.3◦C for model 7.2
and similar for model 7.3, while they are 0.44◦C, 0.48◦C
and 3.03◦C for the neural network model.

Focusing only on alkanes with five or more carbon
atoms, we observe that average absolute deviation for struc-
tural isomers decreases with increasing molecular weight
Figure 6. A decreasing average absolute deviation, as
well as greater accuracy and consistency of our predictions
compared to other models means that our neural network
model can be used to predict the boiling point of alkanes
whose boiling point hasn’t yet been experimentally mea-
sured with higher confidence.

We observe that adding a branch but keeping the molec-
ular weight constant decreases the boiling point by about
7◦C. Increasing the length of the branch while keeping
molecular weight constant reduces the boiling point by
about 2◦C, while moving the branch by an atom along
the longest chain reduces it by about 2◦C.

We also predict the molar heat capacity of branched
alkanes with fewer than 13 carbon atoms at 25◦C. The
larger the molar heat capacity, the more energy an alkane
can absorb and transport without a change in tempera-
ture, making it more suitable for use in lubricant base
oils.
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Figure 6: Average absolute deviation of the neural network model
for the boiling point as a function of number of carbon atoms.
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Figure 7: Boiling point vs number of carbon atoms for linear alkanes
and the 2,2-dimethyl homologous series. Dots represent the exper-
imental data entries, blue and green lines represent the mean pre-
dictions of the neural network while the colored areas represent the
uncertainties in the predictions.
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Method R2 AAD (◦C)
Neural Network 0.995 1.69
Model 7.2 [33] 0.977 2.47
Model 7.3 [33] 0.975 2.24

Table 1: Summary of accuracy of three boiling point models. Our
neural network model is compared to two regression models that use
molecular structure and topological indices as inputs.
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Figure 8: Parity plot for heat capacity of alkanes. Neural network
model is compared to the second order group additivity [34].

After applying the same neural network architecture
that we used to predict the boiling point to a dataset com-
prised of 176 alkanes, we obtain a cross-validation R2 =
0.997, showing an excellent fit. Our dataset doesn’t in-
clude methane, ethane, propane, butane and 2-methylbutane,
as they are not liquids at 25◦C. We can see the quality of
fit for some of our predictions in Figure 10.

Method R2 AAD (J(molK)−1)
Neural Network 0.996 2.10
Second Order

Group Additivity [36]
0.994 2.87

Table 2: Summary of comparison of accuracies of the neural net-
work model and a second order group additivity model for the heat
capacity.

We compare the quality of predictions from the neural
network model to those from a model based on second or-
der group additivity [36]. The neural network model out-
performs the second order group additivity method, giv-
ing an AAD of 2.10 J(molK)−1 (Table 2). Our model also
exhibits greater consistency than the second order group
additivity method. Standard deviation in the absolute de-
viation of our neural network models is 2.04J(molK)−1,
compared to 2.87J(molK)−1 for the second order group
additivity method. We show a parity plot for both models
in Figure 8.

We also investigate the accuracy of our models as a
function of carbon atoms for all the alkanes with more
than 5 and fewer than 13 carbon atoms Figure 9. Unlike
for the boiling point, we do not observe decrease of aver-
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Figure 9: Average absolute deviation of the neural network model
for the boiling point as a function of number of carbon atoms.
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Figure 10: Heat capacity for 3-methyl and 3-ethyl homologous series.
In the top figure, we show heat capacity predictions for the 3-methyl
series, while in the bottom figure we show predictions for the 3-ethyl
series. Orange dots represent experimental data entries, blue line
represents mean prediction while the area around it represents the
uncertainty.

age absolute deviation with increase in molecular weight.
While the average absolute deviation is the smallest for
the structural isomers of dodecane, it is the largest for the
isomers of nonane. Nonetheless, increased accuracy and
consistency of our model result in higher confidence in us-
ing neural networks to predict molar heat capacity of alka-
nes whose heat capacity is unknown. Our results indicate
that the molar heat capacity is approximately an increas-
ing linear function of number of carbon atoms, while the
effects of adding a branch, increasing its length or moving
it along the longest carbon chain are negligible.

3.2. Vapor pressure

Vapor pressure is an important indicator of alkane’s
volatility, since higher vapor pressure means that an alkane
has a higher boiling point at fixed external pressure so
will be more stable in an engine. To model vapor pressure
as a function of temperature, scientists first record vapor
pressure at various temperatures before they fit it to the
Antoine equation and determine the coefficients of Antoine
equation:

log10 p = A− B

C + T
. (6)
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Figure 11: Antoine B coefficient for linear alkanes and 2-methyl ho-
mologous series. Dots represent experimental data entries, blue and
green lines represent the mean predictions and the colored area rep-
resents the uncertainty.

CoefficientsA andB arise from the solution to the Clausius-
Clapeyron relation in an ideal gas approximation, while
coefficient C is empirical and captures the temperature de-
pendence of latent heat. Temperature T is measured in ◦C.
Experimentally deduced values for A,B and C (51,72,72
data entries coming from [1]) in our database give an ac-
curate description of vapor pressure’s temperature pro-
file between temperatures at which log10 p = −1.875 and
log10 p = 0.294, with pressure measured in bars.

To determine the coefficients B and C, we train a neu-
ral network with 6 hidden nodes for each coefficient. Then,
we use the results for B,C and the boiling point at atmo-
spheric pressure (when log10 p = 0) in order to calculate
A. We use molecular basis as our input nodes and ob-
tain a cross-validation R2 = 0.974 for B, R2 = 0.962 for
C, and R2 = 0.958 for A. We also obtain an AAD of
0.008 bar for A, 19.81 bar◦C for B and 1.31◦C for C.
Adding a branch decreases B by about 36 bar◦C (Fig-
ure 11), adding a branch and keeping molecular weight
constant increases C by 3.5◦C, while extending a branch
or moving it along a longest chain is negligible. Antoine
A coefficient is approximately constant for all the alkanes,
which is consistent with the Clausius-Clapeyron equation,
in which A arises as an integration constant. We observe
that adding a branch while keeping the molecular weight
constant increases the vapor pressure, while extending it
and keeping the molecular weight constant or moving it
along the longest carbon chain further increases it by a
smaller amount than adding a branch.

We use neural network predictions for Antoine coef-
ficients to calculate the vapor pressure as a function of
temperature and compare to experimental results. Since
vapor pressure is a continuous variable, we use two re-
placement metrics instead of AAD and R2 to determine
the accuracy of our model. To calculate the first metric,
we first calculate the following quantity:

γ =
1

∆T

∫ Tmax

Tmin

|pexp(T )− pmodel(T )|dT, (7)

before we average it over all the molecules. Note that γ

is the average absolute deviation of the vapor pressure over
the considered temperature range, while Tmin and Tmax are
calculated via the following relation:

(Tmin, Tmax) =
Bexp

Aexp − (−1.875, 0.294)
+ Cexp (8)

Instead of the coefficient of determination, for each
molecule we first calculate the following two quantities:

δ2 =

∫ Tmax

Tmin

(pexp(T )− pmodel(T ))2dT (9)

and

σ2 =

∫ Tmax

Tmin

(pexp(T )− pexp)2dT, (10)

where

pexp =
1

∆T

∫ Tmax

Tmin

pexp(T )dT, (11)

before we calculate the substitute metric as 1−(
∑

i δ
2
i )/(

∑
i σ

2
i ).

This metric tells us how much better our model is com-
pared to a model in which we use an average value of
the vapor pressure to model it over an entire temperature
range. The value of the former metric is 0.069 bar with
a standard deviation of 0.085 bar, while the value of the
latter metric is 0.917, indicating a good fit.

3.3. Flash point

Flash point is the smallest temperature at which a sub-
stance spontaneously ignites in the presence of fire. Pre-
dicting it enables us to identify temperatures for lubricant
storage and handling.

We study the flash point of linear alkanes with fewer
than 31 carbon atoms. We collected experimental data
from two online sources [20], [11]. After training a neu-
ral network with two hidden nodes, we obtain a cross-
validation R2 = 0.910. However, we can use neural net-
works to improve the prediction accuracy. We identify the
data entries that lie more than 2 standard errors away
from the expected value. In Figure 12, we see that alkanes
that have between twenty and twenty-seven carbon atoms
are multiple standard errors away from mean predictions
and appear anomalous. After tracking down the original
sources of this data [11], we found that the entries for alka-
nes from eicosane up to hexacosane are indeed incorrect.
We further validate this claim by investigating the corre-
lation between the flash point and the boiling point. It is
empirically true that flash point is linearly correlated with
the boiling point for hydrocarbon compounds [2], and lin-
ear alkane data entries fit this trend.

After removing erroneous data entries, we predict flash
point again and obtain a cross validation R2 = 0.999,
which would allow the model predictions to replace exper-
imental measurements. We also compare our predictions
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Molecule
Experimental

(◦C)

Group Contribution
Method [35]

Prediction (◦C)

Neural Network
Prediction (◦C)

Group
Contribution
Method [35]
Absolute

Deviation (◦C)

Neural Network
Absolute

Deviation (◦C)

Ethane -139.16 -129.04 -137.63 10.12 1.53
Propane -106.49 -97.15 -106.36 9.34 0.13
Butane -74.00 -71.15 -73.47 2.85 0.53
Pentane -47.21 -47.15 -46.23 0.06 0.98
Hexane -17.40 -26.15 -23.02 8.75 5.62
Heptane -7.12 -6.15 -2.60 0.97 4.52
Octane 16.15 11.85 16.00 4.30 0.15
Nonane 29.29 28.85 33.52 0.44 4.23
Decane 50.45 44.85 50.61 5.60 0.16

Undecane 69.45 60.85 67.89 8.60 1.56
Dodecane 85.43 74.85 83.92 10.58 1.51
Tridecane 100.32 89.85 98.21 10.47 2.11

Tetradecane 111.30 102.85 111.24 8.45 0.06
Pentadecane 122.55 115.85 123.34 6.70 0.79
Hexadecane 131.67 128.85 134.65 2.82 2.98
Heptadecane 146.83 141.18 145.41 5.65 1.42
Octadecane 156.28 153.14 155.81 3.14 0.47
Nonadecane 167.25 164.79 165.80 2.46 1.45

Icosane 175.96 176.13 175.34 0.17 0.62
Octacosane 226.81 258.19 228.83 31.38 2.01
Triacontane 239.93 276.80 238.23 36.87 1.70

Table 3: Experimental values and prediction of the flash point for indicated molecules. The table compares the accuracy of our neural network
model with the accuracy of a model based on the group contribution method.

to those made by a group contribution method presented
in [35]. The neural network model reproduces experimen-
tal flash point with an AAD of 1.65◦C, compared to an
AAD of 8.08◦C predicted by a group contribution method
(Table 3). Our model gives a more accurate prediction
for 16 out of 21 alkanes used to build a model. In addi-
tion, our model shows greater consistency than the group
contribution model. In particular, the model in [35] is
far less accurate for the several smaller molecules such as
ethane and propane, as well as octacosane and triancon-
tane, whose flash point is mispredicted by over 30◦C, while
the accuracy of our model roughly consistent for all the
data entries (Figure 13).

3.4. Melting point

Accurate predictions of the melting point reveals whether
an alkane will solidify at lower temperatures of the lubri-
cant’s operating range. We study the melting point of
branched alkanes with fewer than 13 carbon atoms and
train a neural network with 5 hidden nodes and just the
molecular basis as input nodes. Our dataset consists com-
prises 51 molecules, whose melting point was experimen-
tally measured [1]. After training a neural network model
and cross-validating it we obtain an R2 = 0.650. This poor
reproduction of experimental data motivates us to search
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Figure 12: Flash point vs number of carbon atoms when erroneous
entries are included. Orange dots represent experimental data points,
blue line represents mean prediction, while the colored area around
it represents the uncertainty.
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Figure 13: Parity plot for the flash point. Our neural network model
is compared to a model based on the group contribution method [35].

for additional physical correlations to improve the fidelity
of the neural network predictions.

We have identified two additional effects that affect the
melting point. Firstly, if the number of carbon atoms in
the longest carbon chain is an even number, an alkane has
a higher melting point than if the number of carbon atoms
is odd. Secondly, an alkane with a higher number of molec-
ular symmetries has a higher melting point. This effect is
readily observed in isomers of pentane [24]. Pentane has 4
molecular symmetries and a melting point of -129.9◦C, 2-
methylbutane has 2 molecular symmetries and a a melting
point of -159◦C, while 2,2-dimethylpropane has 24 molec-
ular symmetries and a melting point of -16.6◦C. Therefore,
we add two more elements to the input layer of the neu-
ral network that we use to predict the melting point; one
to capture the odd/even effect, and the second being the
total number of symmetries.

With these two additional chemical descriptors, we train
and cross-validate a new neural network with a cross-validation,
obtaining R2 = 0.998 (Figure 14). We also compare our
results to results obtained by several regression models
that use molecular structure and topological indices as
inputs [37] for 4 molecules whose melting point is com-
mon to both datasets (Table 4). Neural network model
shows greater accuracy, as it reproduces experimental val-
ues with an AAD of 1.45◦, compared to an AAD of 3.45◦

reproduced by models 4.1 and 4.2 in [37].
The significant improvement in accuracy of our model

upon the introduction of the number of symmetries serves
as a further indicator of the importance of the molecular
symmetry on the melting point of alkanes. Looking for-
ward, to further improve the accuracy of the predictions,
one would also include the details of alkanes’ crystalline
structure.

3.5. Kinematic viscosity

Dynamic viscosity (µ) is a measure of a fluid’s resis-
tance to an external force. The ratio of dynamic viscosity
and density (ρ) gives the kinematic viscosity, a measure
of fluid’s flow properties. Predicting an alkane’s kinematic
viscosity at 40◦ and 100◦C enables us to calculate its vis-
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Figure 14: Melting point prediction for randomly selected alkanes. In
the top figure, we show predictions obtained from a neural network
model that used only molecular basis as input nodes. In the bottom
figure, we show predictions obtained from a neural network model
when two symmetry-based input nodes have been added. Orange
dots show experimental data, blue line shows the mean prediction
while colored area shows the uncertainty region.

cosity index (VI)[32], frequently used in industry as a mea-
sure of temperature gradient of kinematic viscosity.

We study the kinematic viscosity of the linear alkanes
from heptane to heneicosane. We first train a neural net-
work to predict dynamic viscosity and density using an
experimental database assembled by merging experimen-
tal data for shear viscosity and density as a function of
temperature and pressure obtained from various research
papers ([3], [4], [9], [10], [14], [18], [22], [25]) into a sin-
gle dataset. Our dataset for density has 537 data entries
while our dataset for viscosity has 638 data entries. We
then take the ratio of the predictions to determine the
kinematic viscosity and its uncertainty.

Data for dynamic viscosity and density as a function of
temperature and pressure is fragmented, so we need more
input parameters for the neural network models. To pre-
dict density and dynamic viscosity at 40◦C and 100◦C,
we include the additional sparse data of density and dy-
namic viscosity at 25◦C and atmospheric pressure. For the
branched alkanes with eight, nine and ten carbon atoms,
the neural network model for density as a function of
temperature increased in accuracy from R2 = 0.412 to
R2 = 0.840 due to the inclusion of this additional infor-
mation(Figure 15). Furthermore, focusing just on linear
alkanes we obtain a cross-validation R2 of 0.998 for dy-
namic viscosity at 20◦C and of 0.987 for density.

Next, we compare the values for kinematic viscosity
at 20◦C and atmospheric pressure obtained by our ANN
to values obtained by a model based on free volume the-
ory [38] (Table 5). The neural network model is more
accurate than the free volume theory model, reproducing
experimental data with R2 = 0.998 and an average abso-
lute deviation of 0.05 cSt, compared to R2 = 0.899 and
an average absolute deviation of 0.31 cSt predicted by the
free volume theory model [38]. Furthermore, the neural
network model shows greater consistency for the molecules
analysed than the free volume theory model. Standard de-
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Molecule
Experimental

(◦C)

Topological
Indices [38]

Prediction (◦C)

Neural Network
Prediction (◦C)

Topological
Indices [38]
Absolute

Deviation (◦C)

Neural Network
Absolute

Deviation (◦C)

4-methylnonane -98.70 -95.15 -95.66 3.55 3.04
Dodecane -9.58 -11.25 -10.44 1.67 0.86

2-methylundecane -46.81 -47.85 -46.17 1.04 0.64
3-methylundecane -58.00 -65.55 -56.74 7.55 1.26

Table 4: Experimental values and prediction of the melting point for indicated molecules. The table compares the accuracy of our neural
network model with the accuracy of regression models based on the topological indices and molecular structure.
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Figure 15: Cross-validation of density at 100◦C for 4-methylheptane,
2,6-dimethylheptane and 4,5-dimethyloctane. In the top figure, we
show results obtained from the neural network architecture that uses
only the molecular basis as input features. In the bottom figure, we
show results obtained from the neural network architecture that uses
molecular basis and density data at 20◦C as input features.

viation in absolute deviation of the neural network model
is 0.03 cSt compared to 0.57 cSt for the free volume theory
model, with absolute deviations in kinematic viscosity of
pentadecane(1.73 cSt) and tridecane(0.64 cSt) being par-
ticularly large (Figure 17).

Finally, we run our neural network model on density
and dynamic viscosity at 40◦C and 100◦C and at atmo-
spheric pressure to calculate the kinematic viscosity at
40◦C and 100◦C (Figure 16) at atmospheric pressure and
then determine alkane’s viscosity index. The neural net-
work model can provide insights into which linear alkanes
could feature in a commercialized lubricant. Eicosane is
the only linear alkane modelled here that has a value of
kinematic viscosity at 100◦C above 2 cSt so it is the only
linear alkane for which we can define a viscosity index.
However, eicosane is a solid below 36◦C so could only be
present in a base oil lubricant in relatively small amounts,
as lubricants are usually expected to operate between -
15◦C and 100◦C. Therefore, it is likely that linear alkanes
are present in base oil lubricants only in relatively small
amounts.

8 10 12 14 16 18 20
Number of carbon atoms

0

1

2

3

4

5

6

(c
St

)
40 C

100 C

Figure 16: Blue/cyan plot shows predictions for the kinematic vis-
cosity at 40◦C while black/magenta shows predictions at 100◦C.
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Figure 17: Parity plot for kinematic viscosity of linear alkanes. Our
neural network model is compared to a model based on free volume
theory [38].
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Molecule
Experimental

(cSt)

Free Volume
Theory Model [38]
Prediction (cSt)

Neural Network
Prediction (cSt)

Free Volume
Theory Model [38]

Absolute
Deviation (cSt)

Neural Network
Absolute

Deviation (cSt)

Octane 0.65 0.72 0.77 0.07 0.12
Nonane 1.00 0.98 0.99 0.02 0.01
Decane 1.31 1.25 1.27 0.07 0.05

Undecane 1.56 1.77 1.60 0.21 0.05
Dodecane 1.96 1.97 2.01 0.01 0.05
Tridecane 2.48 3.12 2.49 0.64 0.01

Tetradecane 2.99 3.01 3.06 0.01 0.07
Pentadecane 3.78 5.50 3.74 1.73 0.04
Hexadecane 4.54 4.56 4.51 0.02 0.03

Table 5: Experimental values and prediction of the kinematic viscosity at 20 ◦C and atmospheric pressure for indicated molecules. The table
compares the accuracy of our neural network model with the accuracy of a model based on the free volume theory.

4. Conclusions

We have used artificial neural networks that exploit
inter-property correlations to predict the physical prop-
erties of alkanes. The algorithm describes the molecular
structure of linear, single, and double branched alkanes,
and enables us to predict the boiling point, the heat ca-
pacity and the vapor pressure as a function of temperature.
We also predicted the flash point of linear alkanes up to
tridecane and identified erroneous experimental entries in
the literature. The number of molecular symmetries cor-
relates to the melting point. Finally, we have exploited the
temperature and pressure dependence of dynamic viscosity
and density alongside interproperty correlations across the
temperature range to predict the kinematic viscosity at at-
mospheric pressure as a function of temperature. Values
of physical properties reproduced with these neural net-
works are more accurate and consistent than the values
reproduced by other methods. We present a summary of
our results for the boiling point, the molar heat capacity,
the Antoine coefficients, the flash point, the melting point
and the kinematic viscosity in Table 6.

Our study serves as a solid platform from which to
further investigate physical properties of alkanes. This
generic neural network architecture could merge sparse
experimental data with molecular dynamics simulations
to predict physical properties of alkanes, particularly the
intractable properties like shear viscosity and density, en-
abling us to identify the alkanes that could be components
for lubricant base oils with superior physical properties.
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