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About Intellegens

Machine learning software to aid experimental design
developed at University of Cambridge

Merge and aggregate data

Predictive models reduce costs and accelerate discovery



intellegens.ai

Traditional experimental design

Process is expert driven, subjective, and iterative through
trial and improvement

Process takes ~20 years and specialist materials cost
>$10m to develop, drugs cost >$1bn
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Alchemite™ machine learning

Standard algorithms need all inputs to calculate outputs
Typical experimental data is 5% complete

Alchemite™ predicts from available inputs
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Optimized design process

Reduce costs - 90% reduction in experiments and fewer
mMeasurements for expensive quantities

Accelerate discovery and validation to 2 years
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Case study: quantum material for thermometry

90% of the cost of a thermometer is for calibration
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Case study: quantum material for thermometry

90% of the cost of a thermometer is for calibration

Require a simple resistance-temperature relationship
over a wide temperature range

Want constant sensitivity T/R dR/AT with temperature

Thermometer must be stable




Lack of experimental data

>

Phase stability

Composition

intellegens.ai



intellegens.ai

Large amount of computational data
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Simple experimental-computational relationship
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Computational data guides extrapolation
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Alchemite machine learning

Temperature range

Sensitivity
LT Stability
i, ifie— Cost
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Experimental validation

Ce 89% AU 11%
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Experimental validation
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Experimental validation
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Further materials and drug design

Metal-organic framework Concrete Drug design
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Future opportunities: Integrated software

| oad data

Training

Predict & design

Predicting properties of steel

We demonstrate a neural network that predicts the physical properties of steels based on the composition and heat treatment.The

neural network model was trained from a library of experimental data from 1000 alloys. Elichorsie
optimize a

In the first panel below set the percentages of each element in the composition and heat treatment temperature, and then click predict composition for

to get the neural network estimates for yield stress, ultimate tensile strength, and elongation. given targets

Click here to use this technology to optimize the yield stress, ultimate tensile strength, and elongation the steel.

This same technology was used to understand nickel alloys where the composition covered 20 elements, 5 heat treatment parameters,
and predicted 11 material properties. Click here to read more about this study.

S

Iron (Fe) 100 remain %
PREDICT Yield Stress (MPa) 1605 + 46
Carbon(C) o 0100.43%
Manganese (Mn) 0 0t03.0% Ultimate Tensile Strength 1200 + 67
(MPa) =
silicon (Si) 0 0t04.75%
Chromium (Cr) 0 0t017.5% Elongation (%)
Nickel (Ni) 0 0t021.0%
Molybdenum (Mo) 0 0109.67%
Vanadium (V) 0t04.32%
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Design, analyse, and share new materials

Alchemite Prepared models v Materials design company: Material v
Analyze Sensitivity Data
MATERIAL for Model for hardness_loss_v2.csv: 574 (2038) ( | Tges i v () L - B

Design Material Please use the form below to add desired targets variables, other variables will be optimised

Hardness - Vickers (HV) Vs Elongation (% strain)

Design globally - or locally ®

—~ . = Predicted trend
s — Lower
Type Name Value Target Designed  Uncertainty = 400 Upper
Bk o * Realda
@ o Predicted
S
EHC=EE) ‘0-035 ‘ Target: Above v ] 500
‘ o
Mn (0.0 - 15.58) ‘0-38 | Target: Exact o w0 * e
4 T_: X . .
2GR0 ‘0‘43 ‘ Design start v T 10 ° : ;
5 10 15 20 25 20
cro0-326) |16 | Design start v 3 !
Elongation (% strain)
Mo(00-63)  [o37 W esinsiart v
V(©0-125 oo | Design start v

Nb(0.0-648) |00 | | pesign start v
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Manage models and analyse workflow

Alchemite Prepared models ~ Materials design co

MATERIAL for New network for Polymers (1645)

Parameters
Please select a parameter below

Alchemite Prepared models v Materials design company: Material v Sensitivity

Polymer (%)|25.0/100.0

Polymer (%)

Dashboard £ Create a new model ;

Status Name Raw data Accuracy Train time =

Model for hardness_loss v2.csv: 574 67 rows, 10cols  78% 43.63 ;
Analyse sign | @0 Materials » .
itani : rows, 24 cols 719 ;
Model for Titanium_set4.csv: 470 52rows, 24cols  71% 5.26 mn
Titanium_set4.cs —

sensitive
L3 *
S
» & 33
New network for Polymers 885 rows, 12 cols  66% 389.28 R N
il Analyse @0 Materials P Pa Po @y Fof &
Polymer S St— NSNS
L ST T
&€ 25 & PO
T E T T

Polymer (%) !

Flame retardant (%)

Impact modifier (%)

Plasticizerloil (%)

PTFE (lubricant) (%)

Aramid (fiber) (%)

Carbon (fiber) (%)

Glass (fiber) (%)

Mineral (unspecified) (%)

Yield strength (elastic limit) (MPa)

Tensile strength (MPa)

Dielectric constant (relative permittivity)
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Summary of future opportunities of Alchemite™

Alchemite™, a full stack machine learning solution to
merge sparse data

Designed and experimentally verified material for
thermometry, and other alloys and drugs

Show Stand 1311

Contact ben@intellegens.ai

Website  https://intellegens.ai

Demo https://app.intellegens.ai/steel_optimise
Papers https://www.intellegens.ai/paper.html
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Case study: alloy for direct laser deposition
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Direct laser deposition is similar to welding

Direct laser Welding
deposition
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Lack of data for laser deposition
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Large amount of welding data

Welding
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Simple welding-deposition relationship
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Welding data guides extrapolation
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Targets for direct laser deposition alloy

Elemental cost

Density

Yy content

Oxidation resistance
Processability

Phase stability

Yy solvus

Thermal resistance

Yield stress at 900° C

Tensile strength at 900° C
Tensile elongation at 700° C
1000hr stress rupture at 800°C
Fatigue life at 500 MPa, 700°C

<25 $kg!

< 8500 kgm™®
< 25 wt%

<03 mgcm™
< 0.15% defects
> 99.0 wth
>1000°C

> 0.04 KQ'm™>
=200 MPa

> 300 MPa

> 8%

=100 MPa
>10° cycles

intellegens.ai
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Composition of alloy for direct laser deposition

Cr19% Co 4% Mo 4.9% W 1.2% Zr 0.05% Nb 3%

Al 2.9% C 0.04%
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Experimental validation

Materials & Design 168, 107644 (2019)
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Experimental validation

Materials & Design 168, 107644 (2019
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Experimental validation
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